

Connect

Red Hat Observability

Challenges of modern observability

Radek Vokál < rvokal@redhat.com >

Lead Observability Product Management

With great help from Observability PMs

Vanessa Martini (Observability Analytics, UI)

Roger Floren (In cluster monitoring, Cluster Observability, Power monitoring)

Opening Statements

- Red Hat is not a **observability** company.
- Red Hat does not have stand-alone observability products...however....
 - OpenShift, OpenStack and RHEL offer observability components and capabilities.
 - Insights, OpenShift Virtualization, RHOAI contain features to enhance observability
 - Ansible can automate observability functionality.

This session will discuss

- Challenges in the Red Hat Observability stack is helping to overcome
- Overview of **interesting features** Red Hat Observability provides

Observability Value:

Three pathways to platform & application excellence

Monitor

- Platform, Services & Applications
- On-prem and managed OpenShift
- Complex environments, Edge,
 OpenShift AI, OpenShift
 Virtualization

Get Answers

- Analytics & Red Hat domain knowledge
- Al and Proactive analytics
- Data driven decisions

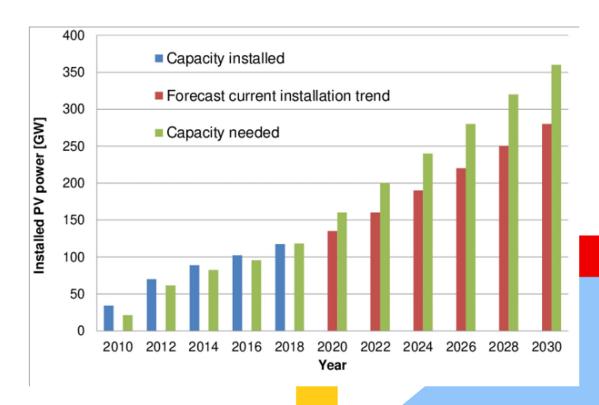
Maximize Effectiveness

- Improve experience with OpenShift platform by data driven features
- Efficient and secure platform and applications
- Value add features in Red Hat products (Support efficiency, Updates, Insights services)

What if there's no Observability?

The rise of solar energy

1.3 million solar panel installations across the entire UK.


Solar panel installation rates tripled in last year

Growing need to connect/disconnect new power sources

Data-driven decisions need to be made within minutes

Wrong decisions can have drastic implications

High demand for a **reliable and scalable** observability solution

Challenge #1: (ever) Growing complexity

Kubernetes has become the standard application platform; complexity remains #1 challenge

Growing maturity of customers and applications, rise of microservices, new workloads (AI) and use cases

Lack of centralized visibility

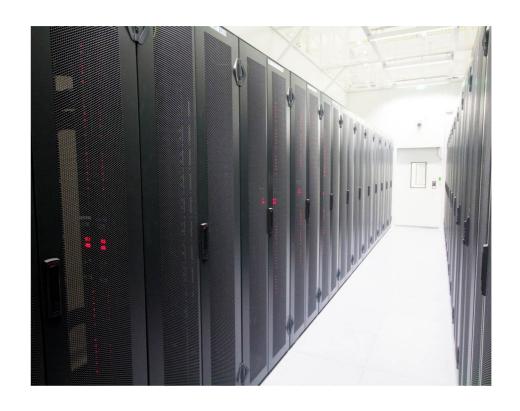
Infrastructure complexity, hybrid cloud, baremetal vs. public cloud, GPU/CPU, Intel/ARM, virtualization

Resource utilization and capacity planning

Challenge #2: Signal Noise & Troubleshooting Complexity

Platform built on signals, encouraging to leverage signals, producing too many signals

Growing data volume, low signal-to-noise ratio


Components are independent, hard to find correlations

What is the most important signal? Where do I start with triaging issues? What should I prioritize?

Different signal types, different data schemas, hard unification and data correlation

Challenge #3: Resource Control & Cost

Cloud scales, developers allocate resources, bills go up!

High overhead cost

Complex capacity planning, on-prem vs. public

Underutilized/over-provisioned resources

Insufficient data granularity and data transparency

Challenge #4: Scalability & Governance

Increasing volume of data generated and growing demand from users to leverage data

Different teams/stakeholders accessing different data - Admins, operatorions, finance, developers, ...

Data overload - leading to slowdowns, errors and oversight

Security and compliance risk - lack of data privacy/governance

Slower innovation, hard to adopt new technologies with a lack of scalable observability

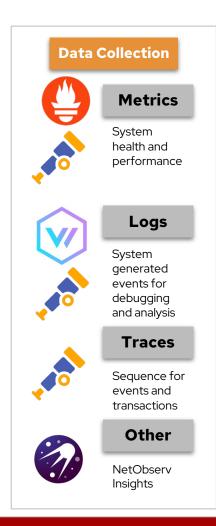
The Red Hat difference:

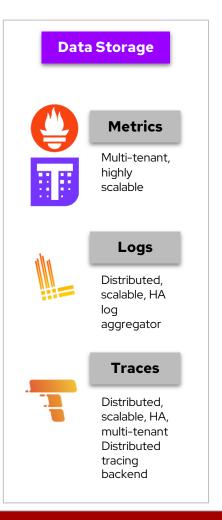
Core elements of integrated observability excellence

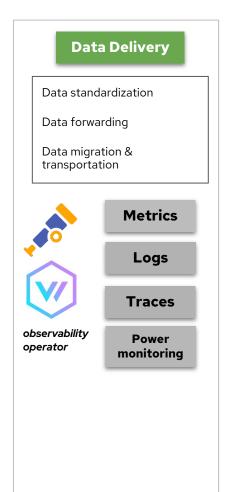
We are

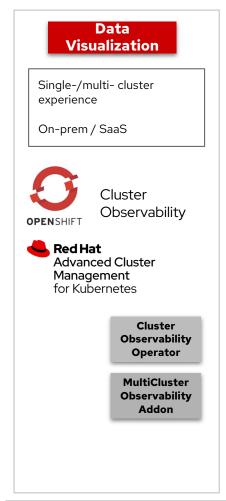
- A distribution of open source observability components
- Components integrated, secured and supported by Red Hat
- Components for collecting, storing, processing, analyzing and visualizing observability signals
- Capabilities to address operational needs of our platforms, improve efficiency and troubleshooting
- Guidelines for observability in specialized use cases
 (Edge, AI, Telco, ..)
- Partner in the ISV ecosystem for integrations

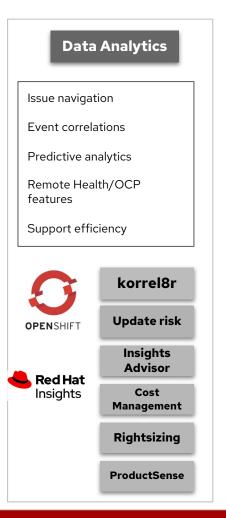
We are **NOT**


- A monitoring software company
- A logging solution company
- An ITSM software company
- Network solution company
- Dynatrace (or Datadog or name other 3rd party SaaS monitoring tool)






Red Hat Observability: Open Source to Enterprise Value


A Framework for Modern Observability

12

Data Collection & Storage

Monitoring & alerting for distributed environments

Strengths

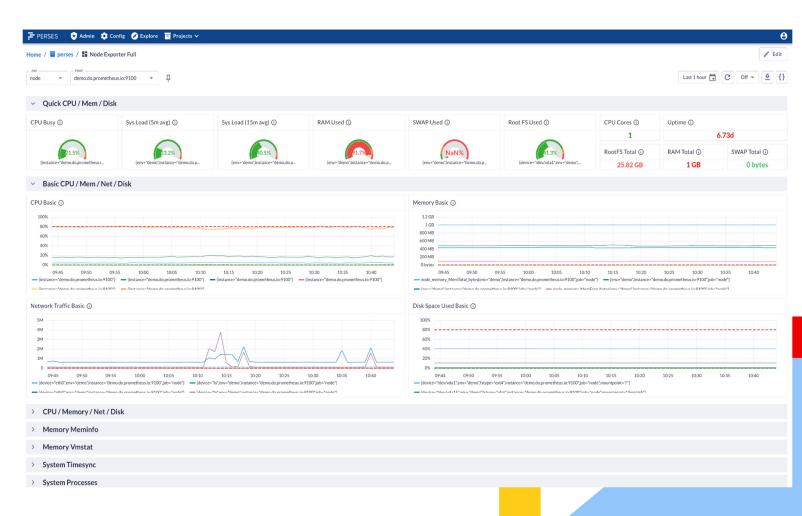
Time-series data collection & **flexible** querying via PromQL

APIs & SDKs for instrumenting, generating & exporting telemetry data

Strengths

Simplification of observability data collection & great **compatibility** with analysis/visualization tools

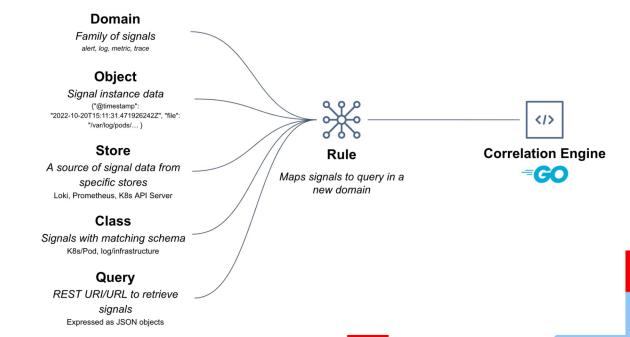
Horizontally scalable **log** aggregation system


Strengths

Simplification of operations & reduction of storage **costs**

Data Visualization: Perses

- Standard Observability data visualization tool - CNCF
 Sandbox
- Enables dashboards-as-code
- **GitOps** friendly
- Embeddable with NPM packages
- Supports plugins


Data Analytics: Troubleshooting journey

- **Correlation** of observability signals
- Rules define relationships between signals
- Reduces troubleshooting time

Incident Navigation

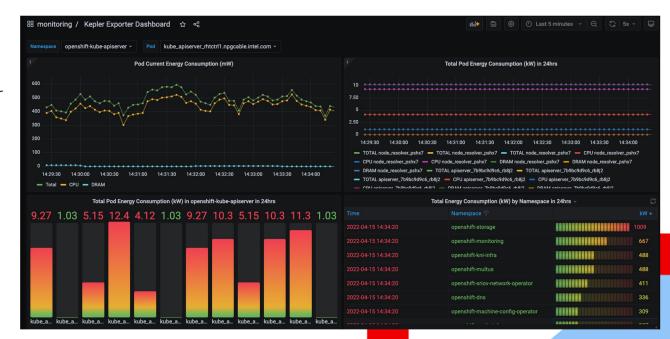
- Grouping of events and signals
- **Time and context** based relationships
- Ability to deep dive and highlight potential root cause

Single- and Multi-Cluster Observability

Cluster Observability Operator

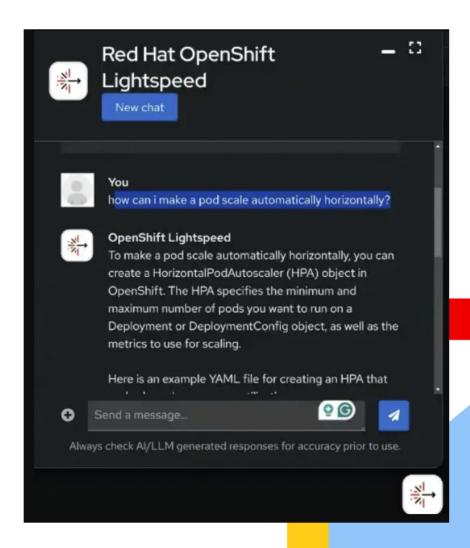
- Single pane of glass for different signal types
- Integration with OpenShift WebConsole UI and analytics components
- Default (opinionated) configurations
- Profiles

Multi-Cluster Observability Addon


- Multi-cluster setup for different signal types
- Tight integration with Advanced ClusterManagement
- Selecting only the most relevant signals
- Adapting to different infrastructure
- UI and analytics integration, fleet-level views

Power **Monitoring: Kepler**

- Kubernetes-based Efficient Power Level Exporter
- eBPF-based **CNCF Sandbox** project
- Probes **performance** counters
- Uses ML models to estimate workload energy consumption
- Exports stats as **Prometheus** metrics



GenAl: OpenShift Lightspeed

OpenShift Lightspeed

- Generative AI based virtual assistant
- Chat interface built into the OpenShift UI console
- Leverages the latest, robust OpenShift documentation
- Question relevance validation/rejection
- Pluggable LLM providers/models

2025 focus

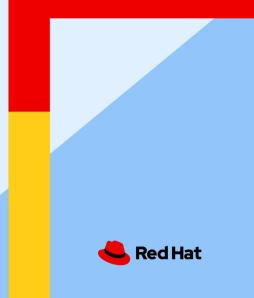
- **Edge clusters**: real-time processing & low-latency
- Defining the role of traces rising technology
- Al-based insights **predictive Al** on the rise!
- Need for industry-accepted standards data standardization
- Defining observability requirements through infrastructure-as-code
- More focus on cost management & sustainability tooling
- Focus on automated remediation and Alops

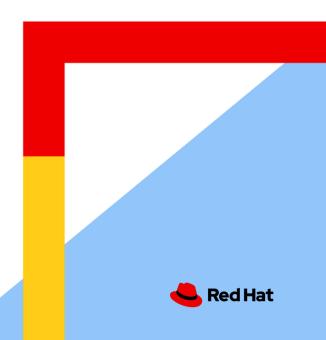
Connect

Thank you

linkedin.com/company/red-hat

facebook.com/redhatinc




youtube.com/user/RedHatVideos

twitter.com/RedHat

